M1. (a)	(Constructive) interference / superposition occurs or Waves arrive in phase so produce maximum intensity Diffraction alone is not enough							
		B1	1					
(t) Correct substitution of numerical value in h / mv irrespective of powers of	10						
		C1						
	2.1 × 10 ⁻¹¹ (m)	A1	2					
				[3]				
M2. A				[1]				
				[,]				
M3. C				[1]				
M4. D				[1]				
M5. B				[1]				

- M6.(a) (electron) diffraction / interference / superposition ✓ Accept derfraction
 - (b) (use of $\lambda = h / mv$) $\lambda = 6.63 \times 10^{34} / (9.11 \times 10^{31} \times 2.5 \times 10^{5}) \checkmark$ $\lambda = 2.9 \times 10^{3} m \checkmark \checkmark (2 \text{ sig figs.})$
 - (c) $v = 2.5 \times 10^{\circ} / 207 \checkmark$ $v = 1200 \text{ m s}^{\circ} \checkmark$ OR use $v = h / m\lambda$ with CE from part (b) *Answer alone gets 2 marks*
 - **M7.** (a) (i) <u>minimum energy</u> required \checkmark to remove electron from metal (surface) OR cadmium OR the material \checkmark
 - (ii) photons have energy dependent on frequency OR energy of photons constant √
 one to one interaction between photon and electron √
 Max KE = photon energy work function in words or symbols √
 more energy required to remove deeper electrons √

(iii) (use of
$$hf = \emptyset + E_{k(max)}$$
)
 $6.63 \times 10^{-34} \times f = 4.07 \times 1.60 \times 10^{-19} \checkmark + 3.51 \times 10^{-20} \checkmark$
 $f = 1.04 \times 10^{15}$ (Hz) OR 1.03×10^{15} (Hz) $\checkmark \checkmark$ (3 sig figs)

4

1

3

2

[6]

(b) theory makes predictions tested ✓ by repeatable/checked by other scientists/peer reviewed (experiments) OR new evidence that is repeatable/checked by other scientists/peer reviewed✓

[12]

M8.		(a)	passed them between charged plates / near charged object		
		or			
		us	e magnetic field		
				M1	
		CO	rect deviation		
		or			
		cire	cular path in direction indicating negative charge		
				A1	
					2
	(b)	dif	fraction		
				B1	
		ele	ctron is behaving as a wave		
				D1	
				ы	2
	(c)	(i)	$p = h/\lambda$ or substitution of wavelength into $\lambda = h/p$ or $\lambda = h$	/mv	
				C1	
			2.76 or 2.8 × 10 ⁻¹⁹		
				A1	
				<i>,</i>	
			KY III S ' / IN S / J S III'' / J □Z'' III''		
				B1	3

(ii) $E_{\kappa} = p^2/2m$ or quotes p = mv and $E_{\kappa} = \frac{1}{2} mv^2$ (symbols or numbers)

C1

A1

[9]

M9. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state) ✓

1

4

2

- (ii) in either case an electron receives (exactly the right amount of) energy ✓
 excitation promotes an (orbital) electron to a higher energy/up a level ✓
 ionisation occurs (when an electron receives enough energy) to leave the atom ✓
- (b) electrons occupy discrete energy levels ✓
 and need to absorb an exact amount of/enough energy to move to a higher level ✓
 photons need to have certain frequency to provide this energy or e = hf ✓
 energy required is the same for a particular atom or have different energy levels ✓
 all energy of photon absorbed ✓
 in 1 to 1 interaction or clear a/the photon and an/the electrons ✓
- (c) energy = $13.6 \times 1.60 \times 10^{-19} = 2.176 \times 10^{-18}$ (J) \checkmark hf = 2.176×10^{-18} \checkmark

$$f = 2.176 \times 10^{-18} \div 6.63 \times 10^{-34} = 3.28 \times 10^{15} \text{ Hz} \checkmark 3 \text{ sfs} \checkmark$$

4

[12]

[2]

M10. correct substitution into formula, condone power of ten error C1 8.7×10^{-10} (m) A1

M11.		(a)	(i) <i>hf</i> is energy available/received or same energy from photons (1)	
			energy required to remove the electron varies (hence kinetic energy of electrons will vary) (1)	2
		(ii)	(work function is the) minimum energy needed to release an electron (1) (or not enough energy to release electron)	
			below a certain frequency energy of photon is less than work function or energy of photon correctly related to <i>f</i> (1)	2
		(iii)	joule (1) (accept eV)	1
	(b)	(i)	(use of $E = hf$) energy = $6.63 \times 10^{-34} \times 1.5 \times 10^{15}$ (1) energy = 9.9×10^{-19} (J) (1)	2

(ii) number of photons per second = $3.0 \times 10^{-10}/9.9 \times 10^{-19}$ (1)

number of photons per second = $3.0 \times 10^{\circ}$ (1)

(c) (i) (time taken = $6.8 \times 10^{-19}/3 \times 10^{-22}$)

(ii) light travels as particles/ photons (1) (or has a particle(like) nature)

> (which transfer) energy in discrete packets (1) or 1 to 1 interaction or theory rejected/modified (in light of validated evidence)

[12]

2

2

1