M1.(a) (Constructive) interference / superposition occurs
or
Waves arrive in phase so produce maximum intensity
Diffraction alone is not enough
(b) Correct substitution of numerical value in $h / m v$ irrespective of powers of 10
$2.1 \times 10^{-11}(\mathrm{~m})$

M2.A

M3.C

M4.D

M5.B

M6.(a) (electron) diffraction / interference / superposition
Accept derfraction
(b) (use of $\lambda=h / m v$)
$\lambda=6.63 \times 10^{-34} /\left(9.11 \times 10^{31} \times 2.5 \times 10^{5}\right) \checkmark$
$\lambda=2.9 \times 10^{\circ} \mathrm{m} \checkmark \checkmark(2$ sig figs. $)$
(c) $\quad v=2.5 \times 10^{5} / 207 \checkmark$
$v=1200 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
OR use $v=h / m \lambda$ with CE from part (b)
Answer alone gets 2 marks
[6]

M7. (a) (i) minimum energy required
to remove electron from metal (surface) OR cadmium OR the material \checkmark_{2}
(ii) photons have energy dependent on frequency OR energy of photons constant \checkmark one to one interaction between photon and electron Max KE = photon energy - work function in words or symbols more energy required to remove deeper electrons
(iii) (use of hf $\left.=\varnothing+E_{k(\text { max })}\right)$
$6.63 \times 10^{-34} \times f=4.07 \times 1.60 \times 10^{-19} \checkmark+3.51 \times 10^{-20} \checkmark$
$\mathrm{f}=1.04 \times 10^{15}(\mathrm{~Hz})$ OR $1.03 \times 10^{15}(\mathrm{~Hz}) \checkmark \checkmark(3 \mathrm{sig}$ figs $)$
(b) theory makes predictions tested \checkmark by repeatable/checked by other scientists/peer reviewed (experiments) OR new evidence that is repeatable/checked by other scientists/peer reviewed \checkmark

M8. (a) passed them between charged plates / near charged object
or
use magnetic field
M1
correct deviation
or
circular path in direction indicating negative charge
(b) diffraction

B1
electron is behaving as a wave
B1
(c) (i) $p=\mathrm{h} / \lambda$ or substitution of wavelength into $\lambda=\mathrm{h} / \mathrm{p}$ or $\lambda=\mathrm{h} / m v$
2.76 or 2.8×10^{-19}

A1
$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1} / \mathrm{Ns} / \mathrm{Jsm}^{-1} / \mathrm{JHz}^{-1} \mathrm{~m}^{-1}$
B1
(ii) $E_{\kappa}=p^{2} / 2 m$ or quotes $p=m v$ and $E_{k}=1 / 2 m v^{2}$ (symbols or numbers)

C1

4.1 or $4.2 \times 10^{-8}(\mathrm{~J})$

A1

2

M9. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state)
(ii) in either case an electron receives (exactly the right amount of) energy excitation promotes an (orbital) electron to a higher energy/up a level ionisation occurs (when an electron receives enough energy) to leave the atom
(b) electrons occupy discrete energy levels
and need to absorb an exact amount of/enough energy to move to a higher level photons need to have certain frequency to provide this energy or e $=\mathrm{hf} \checkmark$ energy required is the same for a particular atom or have different energy levels all energy of photon absorbed
in 1 to 1 interaction or clear a/the photon and an/the electrons
(c) energy $=13.6 \times 1.60 \times 10^{-19}=2.176 \times 10^{-18}(\mathrm{~J})$
$h f=2.176 \times 10^{-18}$

$$
f=2.176 \times 10^{-18} \div 6.63 \times 10^{-34}=3.28 \times 10^{15} \mathrm{~Hz} \checkmark 3 \mathrm{sfs}
$$

M10. correct substitution into formula, condone power of ten error
C1
$8.7 \times 10^{-10}(\mathrm{~m})$
A1
[2]

M11. (a) (i) $h f$ is energy available/received or same energy from photons (1) energy required to remove the electron varies (hence kinetic energy of electrons will vary) (1)
(ii) (work function is the) minimum energy needed to release an electron (1)
(or not enough energy to release electron)
below a certain frequency energy of photon is less than work function or energy of photon correctly related to $f(1)$
(iii) joule (1) (accept eV)
(b) (i) (use of $E=h f$)
energy $=6.63 \times 10^{-34} \times 1.5 \times 10^{15}(\mathbf{1})$ energy $=9.9 \times 10^{-19}(\mathrm{~J})(1)$
(ii) number of photons per second $=3.0 \times 10^{-10} / 9.9 \times 10^{-19}(1)$
number of photons per second $=3.0 \times 10^{8}(\mathbf{1})$
(c) (i) (time taken $\left.=6.8 \times 10^{-19} / 3 \times 10^{-22}\right)$
time taken $=2.3 \times 10^{3} \mathrm{~s}(1)$
(ii) light travels as particles/ photons (1)
(or has a particle(like) nature)
(which transfer) energy in discrete packets (1)
or 1 to 1 interaction
or theory rejected/modified (in light of validated evidence)

